$\mathrm{P}(1) \mathrm{O}_{4}$ tetrahedron			
$\mathrm{P}(1)-\mathrm{O}(1) \dagger$	1.471 (9)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(16)$	116.6 (4)
$\mathrm{P}(1)-\mathrm{O}(16)$	1.521 (5)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(11)$	117.5 (5)
$\mathrm{P}(1)-\mathrm{O}(11)$	1.536 (7)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(14)$	111.4 (3)
$\mathrm{P}(1)-\mathrm{O}(14) \ddagger$	1.613 (5)	$\mathrm{O}(16)-\mathrm{P}(1)-\mathrm{O}(11)$	106.7 (4)
		$\mathrm{O}(16)-\mathrm{P}(1)-\mathrm{O}(14)$	103.6 (3)
		$\mathrm{O}(11)-\mathrm{P}(1)-\mathrm{O}(14)$	98.8 (3)
$\mathrm{P}(2) \mathrm{O}_{4}$ tetrahedron			
$\mathrm{P}(2)-\mathrm{O}(18)$	1.516 (9)	$\mathrm{O}(18)-\mathrm{P}(2)-\mathrm{O}(17)$	110.7 (5)
$\mathrm{P}(2)-\mathrm{O}(17)$	1.522 (5)	$\mathrm{O}(18)-\mathrm{P}(2)-\mathrm{O}(3)$	112.0 (5)
$\mathrm{P}(2)-\mathrm{O}(3)$	1.538 (6)	$\mathrm{O}(18)-\mathrm{P}(2)-\mathrm{O}(2)$	104.9 (4)
$\mathrm{P}(2)-\mathrm{O}(2)$	1.542 (9)	$\mathrm{O}(17)-\mathrm{P}(2)-\mathrm{O}(3)$	108.0 (3)
		$\mathrm{O}(17)-\mathrm{P}(2)-\mathrm{O}(2)$	110.1 (5)
		$\mathrm{O}(3)-\mathrm{P}(2)-\mathrm{O}(2)$	111.1 (5)
$\mathrm{P}(3) \mathrm{O}_{4}$ tetrahedron			
$\mathrm{P}(3)-\mathrm{O}(7)$	1.513 (6)	$\mathrm{O}(7)-\mathrm{P}(3)-\mathrm{O}(5)$	109.6 (5)
$\mathrm{P}(3)-\mathrm{O}(5)$	1.533 (4)	$\mathrm{O}(7)-\mathrm{P}(3)-\mathrm{O}(4)$	109.7 (5)
$\mathrm{P}(3)-\mathrm{O}(4)$	1.543 (4)	$\mathrm{O}(7)-\mathrm{P}(3)-\mathrm{O}(6)$	112.9 (2)
$\mathrm{P}(3)-\mathrm{O}(6)$	1.545 (6)	$\mathrm{O}(5)-\mathrm{P}(3)-\mathrm{O}(4)$	106.3 (2)
		$\mathrm{O}(5)-\mathrm{P}(3)-\mathrm{O}(6)$	109.8 (5)
		$\mathrm{O}(4)-\mathrm{P}(3)-\mathrm{O}(6)$	108.3 (5)
$\mathrm{P}(4) \mathrm{O}_{4}$ tetrahedron			
$\mathrm{P}(4)-\mathrm{O}(9)$	1.501 (6)	$\mathrm{O}(9)-\mathrm{P}(4)-\mathrm{O}(19)$	110.4 (5)
$\mathrm{P}(4)-\mathrm{O}(19)$	1.531 (9)	$\mathrm{O}(9)-\mathrm{P}(4)-\mathrm{O}(20)$	111.8 (4)
$\mathrm{P}(4)-\mathrm{O}(20)$	1.533 (6)	$\mathrm{O}(9)-\mathrm{P}(4)-\mathrm{O}(8)$	111.5 (5)
$\mathrm{P}(4)-\mathrm{O}(8)$	1.554 (9)	$\mathrm{O}(19)-\mathrm{P}(4)-\mathrm{O}(20)$	108.9 (5)
		$\mathrm{O}(19)-\mathrm{P}(4)-\mathrm{O}(8)$	103.6 (3)
		$\mathrm{O}(20)-\mathrm{P}(4)-\mathrm{O}(8)$	110.4 (5)
$\mathrm{P}(5) \mathrm{O}_{4}$ tetrahedron			
$\mathrm{P}(5)-\mathrm{O}(10) \dagger$	1.496 (9)	$\mathrm{O}(10)-\mathrm{P}(5)-\mathrm{O}(12)$	115.1 (7)
$\mathrm{P}(5)-\mathrm{O}(12)$	1.521 (7)	$\mathrm{O}(10)-\mathrm{P}(5)-\mathrm{O}(15)$	116.1 (4)
$\mathrm{P}(5)-\mathrm{O}(15)$	1.529 (6)	$\mathrm{O}(10)-\mathrm{P}(5)-\mathrm{O}(14)$	110.7 (4)
$\mathrm{P}(5)-\mathrm{O}(14) \ddagger$	1.600 (5)	$\mathrm{O}(12)-\mathrm{P}(5)-\mathrm{O}(15)$	109.1 (4)
		$\mathrm{O}(12)-\mathrm{P}(5)-\mathrm{O}(14)$	102.2 (3)
$\mathrm{P}(1)-\mathrm{O}(14) \ddagger-\mathrm{P}(5)$	135.7 (3)	$\mathrm{O}(15)-\mathrm{P}(5)-\mathrm{O}(14)$	102.0 (3)
Environment around $\mathrm{Rb}(1)$ with $\mathrm{CN}=10$			
$\mathrm{Rb}(1)-\mathrm{O}(7)$	2.763 (6)	$\mathrm{Rb}(1)-\mathrm{O}(11)$	3.148 (9)
$\mathrm{Rb}(1)-\mathrm{O}(1)$	2.864 (8)	$\mathrm{Rb}(1)-\mathrm{O}(9)$	3.238 (8)
$\mathrm{Rb}(1)-\mathrm{O}(14)$	2.955 (5)	$\mathrm{Rb}(1)-\mathrm{O}(3)$	3.238 (8)
$\mathrm{Rb}(1)-\mathrm{O}(19)$	3.045 (8)	$\mathrm{Rb}(1)-\mathrm{O}(17)$	3.323 (9)
$\mathrm{Rb}(1)-\mathrm{O}(10)$	3.074 (8)	$\mathrm{Rb}(1)-\mathrm{O}(5)$	3.361 (13)
Environment around $\mathrm{Rb}(2)$ with $\mathrm{CN}=9$			
$\mathrm{Rb}(2)-\mathrm{O}(10)$	2.811 (8)	$\mathrm{Rb}(2)-\mathrm{O}(13)$	3.198 (4)
$\mathrm{Rb}(2)-\mathrm{O}(19)$	2.932 (8)	$\mathrm{Rb}(2)-\mathrm{O}(2)$	3.210 (8)
$\mathrm{Rb}(2)-\mathrm{O}(1)$	2.935 (7)	$\mathrm{Rb}(2)-\mathrm{O}(11)$	3.217 (9)
$\mathrm{Rb}(2)-\mathrm{O}(5)$	3.162 (4)	$\mathrm{Rb}(2)-\mathrm{O}(8)$	3.398 (8)
$\mathrm{Rb}(2)-\mathrm{O}(15)$	3.179 (6)		
Environment around $\mathrm{Rb}(3)$ with $\mathrm{CN}=11$			
$\mathrm{Rb}(3)-\mathrm{O}(6)$	2.784 (6)	$\mathrm{Rb}(3)-\mathrm{O}(5)$	3.285 (13)
$\mathrm{Rb}(3)-\mathrm{O}(10)$	2.923 (8)	$\mathrm{Rb}(3)-\mathrm{O}(17)$	3.337 (7)
$\mathrm{Rb}(3)-\mathrm{O}(12)$	2.981 (10)	$\mathrm{Rb}(3)-\mathrm{O}(14)$	3.387 (5)
$\mathrm{Rb}(3)-\mathrm{O}(2)$	3.013 (8)	$\mathrm{Rb}(3)-\mathrm{O}(9)$	3.409 (10)
$\mathrm{Rb}(3)-\mathrm{O}(1)$	3.021 (7)	$\mathrm{Rb}(3)-\mathrm{O}(20)$	3.457 (8)
$\mathrm{Rb}(3)-\mathrm{O}(16)$	3.101 (6)		

[^0]Data collection, cell refinement and data reduction were carried out using Stoe software. Precise cell refinement was performed by double-step-scan technique. The structure was solved using CRYSTALS (Watkin, Carruthers \& Betteridge, 1985). To avoid the strong correlations between nine pairs of positional (y) and displacement parameters for atoms related by pseudo-symmetry, the parameters within these pairs were refined riding on one another. The Flack enantiopole parameter (Flack, 1983) was refined to $0.94(1)$. Weights $w=1 /\left[\sigma^{2}(F)+\right.$ $k F^{2}$] were used until the last few cycles when robust-resistant weights (Tukey, 1974) were applied (parameters used 9.07, -7.01 and 7.16).
© 1994 International Union of Crystallography
Printed in Great Britain - all rights reserved

I thank Drs Mike Glazer and David Watkin for helpful discussions, Dr Pam Thomas, Warwick University, England, for giving me access to their furnace, and Anthony Fitzmaurice for the Kurtz test run. This work was supported by a grant from the Optoelectronics Research Centre at Southampton University/University College London.

Lists of structure factors and anisotropic displacement parameters have been deposited with the IUCr (Reference: DU1071). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kurtz, S. K. \& Perry, T. T. (1968). J. Appl. Phys. 39, 3798-3813.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
Stucky, G. D., Phillips, M. L. F. \& Gier, T. E. (1989). Chem. Mater. 1, 492-509.
Thomas, P. A., Glazer, A. M. \& Watts, B. E. (1990). Acta Cryst. B46, 333-343.
Tukey, J. W. (1974). Critical Evaluation of Chemical and Physical Strucutral Information, pp. 3-14. Washington, DC: National Academy of Sciences.
Watkin, D. J., Carruthers, J. R. \& Betteridge, P. W. (1985). CRYSTALS Users Guide. Chemical Crystallography Laboratory, Univ. of Oxford, England.

Acta Cryst. (1994). C50, 1525-1527
$\mathbf{R b T i}_{\mathbf{2}}\left(\mathbf{P O}_{\mathbf{4}}\right)_{\mathbf{3}}$

Rumen Duhlev \dagger
Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, England

(Received 20 September 1993; accepted 27 January 1994)

Abstract

Rubidium titanium monophosphate forms trigonal crystals, isostructural with its lithium, sodium and potassium analogues. The structure consists of a three-dimensional framework of corner-shared TiO_{6} octahedra and PO_{4} tetrahedra with the Rb atoms alternating along the $\overline{3}$ axis with $\mathrm{Ti}_{2} \mathrm{P}_{3} \mathrm{O}_{18}$ units, composed of two TiO_{6} octahedra linked through three PO_{4} tetrahedra. \dagger Present address: World Scientific Publishing Co. Ltd, 73 Lynton Mead, Totteridge, London N20 8DH, England.

Comment

A large number of compounds with general formula $M^{\mathrm{I}} M^{\mathrm{IV}}{ }_{2}\left(\mathrm{PO}_{4}\right)_{3}$, where M^{I} is $\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}, \mathrm{NH}_{4}, \mathrm{H}_{3} \mathrm{O}$, Ag, Tl or Cu and M^{IV} is $\mathrm{Ti}, \mathrm{Zr}, \mathrm{Hf}, \mathrm{Th}$ or U , are known to crystallize as the Nasicon type (space group $R \overline{3} c$). $\mathrm{RbTi}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ was first reported and characterized by Masse (1970), who determined the cell parameters from a Guinier photograph as $a=8.308, c=23.59 \AA$, and assigned the space group $R \overline{3} c$.

Single crystals of $\mathrm{RbTi}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ were obtained by hightemperature growth. $\mathrm{Rb}_{2} \mathrm{CO}_{3}, \mathrm{TiO}_{2}$ and $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ in the molar ratio $2.25: 1: 3.3$ were mixed in a platinum crucible, heated to 1373 K , kept at that temperature for 10 h , then cooled slowly ($5^{\circ} \mathrm{h}^{-1}$) to 923 K and removed from the furnace. After recovering the crystals from the solidified flux, their powder pattern showed that they consisted of a mixture of $\mathrm{RbTi}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ (Masse, 1970) and a new compound which was identified by structure determination as $\mathrm{Rb}_{3} \mathrm{Ti}_{3} \mathrm{P}_{5} \mathrm{O}_{20}$ (Duhlev, 1994).

The bond lengths and angles (Table 2) are within the commonly observed range. The structure consists of a framework of corner-shared TiO_{6} octahedra and PO_{4} tetrahedra, with the Rb atoms situated in the tunnels within the framework (Fig. 1). A $\mathrm{Ti}_{2} \mathrm{P}_{3} \mathrm{O}_{18}$ unit composed of two TiO_{6} moieties linked through three PO_{4} groups can be identified within the structure. These units alternate with Rb atoms along the $\overline{3}$ axis. Rb has six nearest $\mathrm{O}(2)$ neighbours $[\mathrm{Rb}-\mathrm{O}(2)=2.854$ (2) \AA, bond strength $=0.20 \mathrm{v} . \mathrm{u}$.$] , three from each \mathrm{TiO}_{6}$ group above

Fig. 1. Projection of the structure of $\mathrm{RbTi}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ along [0 $\left.\overline{10}\right]$. The TiO_{6} and PO_{4} polyhedra and Rb spheres centred at $y=0$ are dark, those at or around $y=\frac{1}{3}$ are lighter, $y=\frac{2}{3}$ are dotted and $y=1$ are empty.
and below. Bond-valence calculations (Brown \& Altermatt, 1985) indicate that the six next-nearest neighbours, $\mathrm{O}(1)$, from the same two TiO_{6} octahedra $[\mathrm{Rb}-$ $\mathrm{O}(1)=3.366(2) \AA$, bond strength $=0.05$ v.u.], could be considered also, thus resulting in a coordination number for Rb of 12 .

As initially found from the powder patterns (Masse, 1970), $\mathrm{RbTi}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ is isostructural with $\mathrm{NaTi}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ (Ivanov, Belokoneva, Egorov-Tismenko, Simonov \& Belov, 1980) and $\mathrm{KTi}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ (Lunezheva, Maksimov, Mel'nikov \& Muradyan, 1989). The length and strength (Brown \& Altermatt, 1985) of the main bonds in these structures is given in Table 3. Several structural characteristics change in a monotonic way with the increase of the ionic radius of the alkali metal from Na to Rb . While the c-axis length and the volume increase, the a axis shrinks. $O(1)$ comes closer to the metal; the bond strength of the $M-\mathrm{O}(1)$ bond increases from 0 (no interaction) to 0.05 , which could be considered as a bond, though rather weak. At the same time the severe distortion of the environment of Ti relaxes to form an almost regular octahedron.

Experimental

Crystal data
$\mathrm{RbTi}_{2}\left(\mathrm{PO}_{4}\right)_{3} \quad$ Mo $K \alpha$ radiation
$M_{r}=466.14$
Trigonal
$R \overline{3} c$
$a=8.2896$ (8) \AA
$c=23.530(4) \AA$
$V=1400.3(3) \AA^{3}$
$Z=6$
$D_{x}=3.32 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe Stadi-4 diffractometer
$2 \theta-\omega$ scans
Absorption correction:
none ($\mu \bar{r}=0.44$)
1543 measured reflections
660 independent reflections 319 observed reflections
$[I>3 \sigma(I)]$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=35^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 11$
$l=-37 \rightarrow 37$
3 standard reflections frequency: 50 min intensity variation: 5\%

Refinement

Refinement on F
$R=0.0277$
$w R=0.0276$
319 reflections
30 parameters
$w=1 /\left[\sigma^{2}(F)+0.001114 F^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.02 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.80 \mathrm{e}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 72 reflections
$\theta=13-19^{\circ}$
$\mu=7.78 \mathrm{~mm}^{-1}$
Room temperature
Rhombohedron
$0.11 \times 0.11 \times 0.11 \mathrm{~mm}$
Colourless

Extinction correction: Larson (1967)
Extinction coefficient: 0.0025 (1)

Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV) (for neutral atoms)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
	x	y	z	U_{eq}
	x	0	0	$0.0165(4)$
Rb	0	0	$0.15141(4)$	$0.0023(4)$
Ti	0	$0.71964(17)$	0	$1 / 4$
P	$0.2126(4)$	$0.1469(4)$	$0.30069(10)$	$0.0022(5)$
$\mathrm{O}(1)$	$0.4659(4)$	$0.3029(4)$	$0.23157(10)$	$0.0087(10)$
$\mathrm{O}(2)$				

Table 2. Selected geometric parameters ($\AA,{ }^{\circ}$)

TiO_{6} octahedron			
$\mathrm{Ti}-\mathrm{O}(1) \times 3$	1.927 (3)	$\mathrm{O}(1)-\mathrm{Ti}-\mathrm{O}(1)$	89.2 (1)
$\mathrm{Ti}-\mathrm{O}(2) \times 3$	1.944 (3)	$\mathrm{O}(1)-\mathrm{Ti}-\mathrm{O}(2)$	97.2 (1)
		$\mathrm{O}(1)-\mathrm{Ti}-\mathrm{O}(2)$	86.5 (1)
		$\mathrm{O}(1)-\mathrm{Ti}-\mathrm{O}(2)$	172.3 (1)
		$\mathrm{O}(2)-\mathrm{Ti}-\mathrm{O}(2)$	87.6 (1)
PO_{4} tetrahedron			
$\mathrm{P}-\mathrm{O}(2) \times 2$	1.517 (3)	$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(2)$	110.7 (2)
$\mathrm{P}-\mathrm{O}(1) \times 2$	1.530 (3)	$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(1)$	109.0 (2)
		$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(1)$	107.1 (2)
		$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(1)$	113.9 (2)
Environment around Rb			
$\mathrm{Rb}-\mathrm{O}(2) \times 6$	2.854 (2)	$\mathrm{O}(2)-\mathrm{Rb}-\mathrm{O}(2)$	56.3 (1)
$\mathrm{Rb}-\mathrm{O}(1)$	3.366 (2)	$\mathrm{O}(1)-\mathrm{Rb}-\mathrm{O}(1)$	65.0 (1)
		$\mathrm{O}(2)-\mathrm{Rb}-\mathrm{O}(1)$	45.5 (1)
		$\mathrm{O}(2)-\mathrm{Rb}-\mathrm{O}(1)$	79.0 (1)
		$\mathrm{O}(2)-\mathrm{Rb}-\mathrm{O}(1)$	86.4 (1)

Table 3. Comparison of cell parameters (\AA), bond lengths (\AA) and bond strengths (v.u.) for isostructural $M \mathrm{Ti}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ compounds

a	$\mathrm{NaTi} \mathrm{V}_{\left(\mathrm{PO}_{4}\right)_{3}{ }^{*}}$		$\mathrm{KTi}_{2}\left(\mathrm{PO}_{4}\right)_{3} \dagger$		$\mathrm{RbTi}_{2}\left(\mathrm{PO}_{4}\right)_{3}$	
	Length	Strength	Length	Strength	Length	Strength
	8.502	-	8.367	-	8.290	-
c	21.833	-	23.074	-	23.530	-
M-O(2)	2.290	0.27	2.745	0.19	2.857	0.20
$M-\mathrm{O}(1)$	3.788	0	3.418	0.03	3.366	0.05
$\mathrm{Ti}-\mathrm{O}(1)$	1.896	0.80	1.918	0.76	1.927	0.74
$\mathrm{Ti}-\mathrm{O}(2)$	2.107	0.45	1.942	0.71	1.944	0.71
$\mathrm{P}-\mathrm{O}(2)$	1.530	1.27	1.524	1.29	1.517	1.31
$\mathrm{P}-\mathrm{O}(1)$	1.533	1.25	1.530	1.27	1.530	1.27

*Ivanov, Belokoneva, Egorov-Tismenko, Simonov \& Belov (1980).
\dagger Lunezheva, Maksimov, Mel'nikov \& Muradyan (1989).
Data collection, cell refinement and data reduction were carried out using Stoe software. Precise cell refinement was performed by double-step-scan technique. The atomic coordinates for $\mathrm{KTi}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ (Lunezheva, Maksimov, Mel'nikov \& Muradyan, 1989) were used as an initial model. The structure was refined using SHELX76 (Sheldrick, 1976).

I thank Dr Pam Thomas, Warwick University, England, for providing me with the facilities for growing the crystals. This work was supported by a grant from the Optoelectronics Research Centre at Southampton University/University College London.

[^1]
References

Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Duhlev, R. (1994). Acta Cryst. C50, 1523-1525.
Ivanov, Yu. A., Belokoneva, E. L., Egorov-Tismenko, Yu. K., Simonov, M. A. \& Belov, N. B. (1980). Dokl. Akad. Nauk SSSR, 252, 1122-1125; Sov. Phys. Dokl. 252, 420-422.
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Lunezheva, E. S., Maksimov, B. A., Mel'nikov, O. K. \& Muradyan, L. A. (1989). Kristallografiya, 34, 611-614; Sov. Phys. Crystallogr. 34, 363-365.
Masse, R. (1970). Bull. Soc. Fr. Mineral. Cristallogr. 93, 500-503. Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.

Acta Cryst. (1994). C50, 1527-1529

Ammonium Heptachlorooxodiantimonate(III), $\left(\mathbf{N H}_{4}\right)_{3}\left[\mathbf{S b}_{2} \mathbf{C l}_{7} \mathbf{O}\right]$

Robin D. Rogers* and Mary L. Jezl
Department of Chemistry, Northern Illinois University, DeKalb, IL 60115, USA

(Received 14 September 1993; accepted 14 February 1994)

Abstract

Each Sb atom of the title compound is formally ψ-tetrahedral $\left(A B_{3} E\right)$ with covalent bonds to two terminal Cl atoms and one bridging O atom. Three directed secondary interactions to three additional symmetrically bridging Cl atoms give each Sb atom a roughly octahedral coordination geometry. The bridging arising from the secondary interactions produces chains of $\left[\mathrm{Sb}_{2} \mathrm{Cl}_{4} \mathrm{O}\right]_{2}$ units which propagate along the unit-cell c axis. The $\mathrm{O}, \mathrm{Cl}(3)$ and $\mathrm{Cl}(4)$ atoms lie on crystallographic mirror planes, while $\mathrm{Cl}(5)$ resides on a twofold axis. The ammonium cations are hydrogen bonded to the Cl and O atoms.

Comment

The title compound was unintentionally isolated during the reaction of SbCl_{3} with tetraethylene glycol in a 3:1 acetonitrile-methanol solution containing stoichiometric amounts of $\mathrm{NH}_{4} \mathrm{OH}$. The covalent $\mathrm{Sb}-\mathrm{Cl}(1,2)$ and $\mathrm{Sb}-\mathrm{O}$ distances are normal (Begley, Hall, Nunn \& Sowerby, 1986; Hall \& Sowerby, 1979; Rheingold, Landers, Dahlstrom \& Zubieta, 1979). There are two types of bridging interaction produced by the secondary $\mathrm{Sb}-\mathrm{Cl}$ contacts (Sawyer \& Gillespie, 1986). The Cl(3) and the O atoms bridge two Sb atoms with an $\mathrm{Sb} \cdots \mathrm{Sb}$ separation of 3.582 (1) \AA. $\mathrm{The} \mathrm{Cl}(5)$ and $\mathrm{Cl}(4)$ atoms form

[^0]: * Bridging atom between $\mathrm{Ti}(1) \mathrm{O}_{6}$ and $\mathrm{Ti}(3) \mathrm{O}_{6}$.
 \dagger Terminal atom from a PO_{4} group (not connected to Ti).
 \ddagger Bridging atom between two PO_{4} groups.

[^1]: Lists of structure factors and anisotropic displacement parameters have been deposited with the $I U C r$ (Reference: DU1070). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

